Arrays in NumPy
What are arrays in numPy and how to use it?
In NumPy, an array is a powerful data structure that allows you to store and manipulate numerical data efficiently. It is called a NumPy array or ndarray (N-dimensional array).
Creating a NumPy Array
To create an array, you first need to import NumPy:
import numpy as np
- Creating Arrays from Lists
You can create a NumPy array from a Python list using
np.array()
:
arr = np.array([1, 2, 3, 4, 5])
print(arr)
# Output: [1 2 3 4 5]
- Creating Multi-Dimensional Arrays You can create a 2D (matrix) or higher-dimensional array:
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])
print(arr_2d)
Output:
[[1 2 3]
[4 5 6]]
- Using NumPy Functions to Create Arrays NumPy provides several functions to generate arrays:
- Zeros Array:
zeros = np.zeros((3, 3)) # 3x3 array of zeros
- Ones Array:
ones = np.ones((2, 4)) # 2x4 array of ones
- Identity Matrix:
identity = np.eye(3) # 3x3 identity matrix
- Random Array:
rand_arr = np.random.rand(2, 3) # 2x3 array with random values
- Arange (Like Python
range
):arr = np.arange(0, 10, 2) # [0, 2, 4, 6, 8]
- Linspace (Evenly Spaced Values):
lin_arr = np.linspace(0, 10, 5) # [0, 2.5, 5, 7.5, 10]
NumPy Array Properties
You can check the following properties of an array:
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr.shape) # (2, 3) -> Rows x Columns
print(arr.ndim) # 2 -> Number of dimensions
print(arr.size) # 6 -> Total elements
print(arr.dtype) # int64 (or int32) -> Data type of elements
No questions available.